-
浏览量:1820更新时间:2021/9/2 13:17:38
内皮细胞 内皮祖细胞 血管生成 层流剪切应力 振荡流 内皮祖细胞 剪切力 流体剪切力 循环内皮祖细胞 流体剪切力 细胞迁移 细胞增殖
-
浏览量:17457更新时间:2017/12/18 19:25:13
该系统用以实现模拟生理状态及非生理状态下血流流体剪切力对于细胞、组织的刺激作用,可实现细胞流体环境下的细胞粘附实验、内皮细胞培养实验、癌细胞侵袭实验、骨细胞生成实验、基因诱导实验、药物作用实验、药物代谢实验、血管及组织保存实验等等。
-
浏览量:6596更新时间:2017/9/12 11:58:22
系统模拟心脏供血对动脉产生的脉动切应力,更真实的模拟在动脉环境下的环境,从而以工程的方式研究细胞在脉动环境下的表达。
-
浏览量:345更新时间:2024/5/14 13:37:01
内皮细胞激活、功能障碍和损伤被认为是动脉粥样硬化发病机制中的关键初始事件。OSS、TLR2和TAK1都以某种方式参与了动脉粥样硬化的发展。南京医科大学附属南京第一医院心内科的一项研究曾涉及OSS与TLR2、TLR2与TAK1的关系,旨在确定OSS是否会激活先天免疫反应,是否会引起内皮细胞的炎症变化,以及通过何种信号通路促进炎症。
-
浏览量:7804更新时间:2017/9/12 11:58:22
介绍包含流体剪切力功能的基本款,用以推广动态状态下的使用;针对于单纯研究不同细胞流体剪切力作用下的相关实验:在不同值的恒定流体剪切力下可以进行大量的不同实验;可拆卸,可灭菌,经久耐用的设计,科研前期的使用过程中尽量低的降低了摸索和测试的成本。另外足够细胞培养,满足了提取蛋白的需求;想象力和创新赋予了实验的更多可能;单细胞实验、双细胞共培养实验、组织实验都可以进行;耗材成本低廉(培养片为载玻片);除却生化材料成本,一次仪器使用耗材成本平均不超过10元;在我们的产品系列中,可以根据需要进行升级;多个
-
浏览量:6026更新时间:2017/10/12 9:49:53
请看下图:
-
浏览量:471更新时间:2024/5/20 9:01:53
在四川大学华西基础医学与法医学院生物医学工程研究室课题人员的一项工作中,构建了大脑中动脉栓塞体内模型(MCAO)和体外平行平板流室模型,以探讨 FSS 对 IRI 过程中内皮表型转化和炎症的影响
-
浏览量:1185更新时间:2024/5/6 15:43:24
血管生成,涉及从预先存在的毛细血管中萌发新的血管,有助于胚胎发育、组织稳态和伤口愈合。血管生成或血管修复的调控缺失是动脉粥样硬化的严重并发症。此外,血管生成异常限制了缺血性疾病的组织恢复。因此,血管生成在心血管疾病中具有巨大的血管再生潜力。
-
浏览量:506更新时间:2024/12/10 13:05:51
丹参酸B(SalB)是一种有机化合物,是中药丹参中含量最丰富的水溶性物质。SalB已被广泛用于治疗心血管疾病,包括动脉粥样硬化。越来越多的证据表明,SalB的心肌保护作用归因于其抑制级联分子转导的能力,这些分子转导级联反应促进多种血管细胞类型和组织中的内皮功能障碍、氧化应激、血小板聚集、凝血、血栓形成和炎症。然而,SalB在预防动脉粥样硬化方面的分子靶点仍然难以捉摸。响应机械负荷刺激而激活的Piezo1离子通道参与广泛的生理和病理过程。它们在血管机械转导中的功能包括感知血流的剪切应力,促进血管发
-
浏览量:14288更新时间:2018/1/25 19:05:02
平行平板流动腔小室用于细胞培养的腔室,其内部可以放置载玻片进行细胞培养,可以形成流体剪切应力对细胞进行应力刺激,腔体可以耐压50Kpa,配合我们提供的系统可以实现正压力与剪切力综合作用。
-
浏览量:1436更新时间:2021/6/28 10:31:03
内皮细胞保护血管内表面,维持血管和组织稳态,并调节许多关键的生理过程。内皮细胞的稳态需要吸收来自细胞外基质成分和邻近细胞的粘附位点的各种信号、来自循环可溶性因子的信号以及机械刺激。将机械力转化为生化信号是血管系统和功能发展的基础。细胞粘附分子 (CAMs)调节机械力转化为生化信号以控制广泛的生物过程,在细胞与细胞的连接处充当机械传感器,而整合素作为细胞外基质和肌动球蛋白细胞骨架之间的机械传感器。免疫球蛋白和富含脯氨酸的受体-1 (IGPR-1,也称为 TMIGD2) 是一种新发现的 CAM,在内
-
浏览量:1479更新时间:2021/6/30 8:46:46
动脉分支和弯曲处的血管内皮细胞 (ECs) 会经历血流紊乱,并诱导相邻平滑肌细胞 (SMCs) 的静止到激活的表型转变和随后的细胞增殖。然而,EC 到 SMC 信号流模式特定启动的潜在机制仍然尚不清楚。 以此为起点,由北京大学基础医学院周菁研究员团队与美国加州大学圣迭戈分校钱煦教授团队联合发表的题为《VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscl
-
浏览量:924更新时间:2024/12/31 8:03:59
随着年龄的增长,心血管系统发生了重要变化,包括血管硬度升高和异常重塑。研究表明,与衰老相关的小阻力动脉重塑可以独立于全身血压的变化而发生。研究已表明,小阻力动脉会因血流的持久变化或血流停止而发生重塑。值得注意的是,在血管调节和信号传导中起关键作用的不是血流速率,而是壁面剪切应力(WSS),即由流动血液在内皮细胞表面的摩擦驱动的切向力。WSS 由血流速度、粘度和血管管腔直径确定。在阻力动脉中,WSS 的时间增加会诱导血管舒张,从而有助于组织灌注的前馈调节。WSS可以直接影响微循环中的血管壁重塑和血
-
浏览量:2045更新时间:2022/6/10 8:39:34
尽管高血脂、高血压和高血糖等危险因素对整个动脉系统构成威胁,但动脉粥样硬化优先发生在局部血流受到干扰的动脉分支或弯曲处。在动脉的直线部分发现的层流产生单向剪切应力并促进功能性内皮表型(抗动脉粥样硬化)。相比之下,扰流会产生低且振荡的剪切应力,并诱导 EC 激活和内皮功能表型的适应性改变(促动脉粥样硬化)。 新出现的证据表明,局部微环境在调节内皮细胞功能和动脉粥样硬化区域易感性方面发挥着重要作用。血流动力学可能影响内皮重塑,改变内皮下基质组成。同时,负责与细胞外基质(ECM)相互作用的细胞表面整合
-
浏览量:607更新时间:2025/2/17 8:06:49
先天性心脏病是最常见的出生缺陷,在大多数心脏手术中,患者接受体外循环(CPB),以尽量减少心脏手术时的缺血性损伤。不良的术后结局与 CPB 手术期间和之后的严重全身炎症反应有关。在 CPB 患者的血浆中一直观察到促炎细胞因子,特别是 IL-1β、IL-6、IL-8 和 TNF-α 的激增。尽管全身炎症与器官损伤密切相关,但其发生机制尚不清楚。一个主流假设是 CPB 激活炎性白细胞,在 CPB 后外渗并浸润到不同的器官,导致器官功能障碍。炎性白细胞(包括分化的巨噬细胞)将细胞因子和破坏性可溶性因子
-
浏览量:362更新时间:2025/3/3 9:19:35
血管生成,是指从已有血管发展形成新的血管,涉及内皮细胞(ECs)的增殖、分化和迁移。在生长的血管新生芽融合后,内皮细胞获得动脉表型并进一步成熟,最终形成一个稳定的分级血管网络,通过动脉化的过程灌注组织。遗传程序和环境因素都参与 EC 动脉化,如血流诱导的剪切应力、血管内皮生长因子受体(VEGFR)信号和 Notch 信号。以往研究报道了 ECs 中 Notch 下游的 miRNAs,发现激活Notch 信号至少部分通过 miR-218-5p 下调 MYC 基因表达以抑制细胞周期进程,靶向异质核核
-
浏览量:268更新时间:2025/4/7 8:36:25
子痫前期(PE)是一种妊娠疾病,以高血压、蛋白尿或母体脏器功能障碍为特征。PE 孕妇的一个重要特征是内皮细胞一氧化氮(NO)生物利用度降低,一氧化氮是内皮一氧化氮合酶(eNOS)产生的重要血管扩张剂,在这些女性中,eNOS 也可能由于解偶联或失活等因素而导致其功能失调。研究表明,富含多酚的天然食品和饮料具有抗高血压和抗炎特性,在心血管和代谢疾病中具有重要作用。儿茶素(EGCG)是从绿茶中提取的一种成分,它是绿茶主要的活性和水溶性成分。作为一种强抗氧化剂和血管扩张剂,可以减少氧化损伤,改善内皮功能
-
浏览量:1451更新时间:2022/6/7 8:29:09
来自相同前体的成体干细胞在组织发育和再生方面具有潜在功能,包括骨再生、伤口愈合和血管修复。传统上,血管壁中受损的内皮细胞被附近的内皮细胞(EC)复制所取代。然而,最近的研究结果对这一概念提出了挑战,并指出干细胞也参与了血管修复的过程。事实上,干细胞在血管修复中的潜在作用已经通过大量的体外和体内实验研究确定。 修复过程包括相关信号通路激活、基因表达、氧化平衡和细胞骨架丝排列。基于这些成果,科学家们可以在体外使用有或没有支架的干/祖细胞来制造适合临床移植的生物工程血管。然而,影响生物工程血管成功利用
-
浏览量:232更新时间:2025/4/14 9:20:18
动脉粥样硬化与心肌梗塞和中风密切相关,被认为是一种始于内皮细胞(EC)活化的慢性炎症性疾病。血流剪切应力是指流动的血液对血管表面施加的摩擦力。在动脉树的直线区域中由单向流动产生的层流剪切应力(LSS)是抗动脉粥样硬化的,而由动脉分支或弯曲处的扰动流(DF)产生的振荡剪切应力(OSS)是致动脉粥样硬化的。如果暴露于 DF,EC 炎性细胞因子的表达,尤其是血管细胞粘附分子1(VCAM-1)和细胞间粘附分子1(ICAM-1)的表达会增加。内皮细胞的炎症激活最终会促进并加速动脉粥样硬化的发展。Piezo
-
浏览量:4108更新时间:2022/6/9 8:30:56
癌症在促进肿瘤表型表观遗传重编程和修饰的复杂组织微环境中发展。此外,异常的微环境在肿瘤细胞的生长、侵袭和转移中发挥着重要作用。多项研究证实了肿瘤微环境的细胞和分子组成对癌症发生和发展的贡献。然而,物理刺激的影响仍有待完全阐明。 许多研究都集中在遗传基因和生化因素作为恶性肿瘤的原因。然而,物理因素通常被忽略。肿瘤细胞通常局限于特定的微环境,例如细胞外基质(ECM),而微环境的变化会影响肿瘤细胞的行为。因此,微环境的机械力学特性在癌症的发展、复发和转移中也起着关键作用。 肿瘤的生长和发育伴随着肿瘤微